
Object Oriented Analysis & Design UNIT - I
UNIT – I

Introduction

 Software development means developing a complete software system i.e., not simply coding
or programming but it covers all possible problems domains it covers all levels of complexity

 Main aim of software development is illusion simplicity
 Complex systems are decomposed into smaller one during design process using algorithm

and object oriented decomposition techniques
 Object model contain OOD & OOA
 Elements of this model are encapsulation, abstraction, modularity, hierarchy, typing,

concurrency and persistence
 Software systems are of two types - simple, complex
 Many systems are complex by nature
 Simple systems have: limited purpose, short life span, used by same person, constructed for

specific purpose, if any changes we use new software rather repairing, more difficult to
develop

 Complex systems: exhibit rich set of behaviors, long life span, many uses operating systes,
difficult to develop, can't handle by same person

Terminology used in object model:
 Object Oriented Analysis(OOA): It is a method of analysis that examine the requirements

from problem domain. Analysis is process of extracting needs of system, what system must
do to satisfy requirements

 Object Oriented Design(OOD): Aim of OOD is to design classes identified during analysis
phase and user interaction

Applications of object model:
 It help you to exploit expressive power of object oriented language.
 Encourage reuse not only software but of entire design
 Use of object model produce system that are built upon stable intermediate forms
 Object model is applicable to wide variety of problem domains are given below

o Air traffic control
o Databases, Animation
o Banking and insurance software
o VLSI Design, Robotics
o Image Recognition
o Office Automation, Music Composition

 A Operating system, space craft & air craft simulation
Introduction to UML:

 The UML is a graphical language for visualizing, specifying, constructing, and documenting
the artifacts of a software-intensive system.

 It is a graphical language which provides a vocabulary and set of semantics and rules
 The UML focuses on the conceptual and physical representation of the systems
 It captures the decisions and understanding about systems that must be constructed
 It is used to understand, design, configure, maintain and control information about systems
 It also captures information about the static structure and dynamic behavior of system
 Even though UML is not a programming language, its tools can provide code generators

from UML into various object oriented programming languages
Object orientation:

 Object orientation is one of important concepts
 There are few basic principles behind all object oriented principles
 Key idea in any OOP is object

1

Object Oriented Analysis & Design UNIT - I
 Characteristics of object are:

o It is closed or encapsulated; that is, it is a "thing in itself" separate from other things,
revealing itself by its external behavior (which includes properties such as size, shape,
color, motion, sound etc)

o The internal structure of object is accessible only if it is "cut open" in some way
o An object may be composed of other objects which determine how it behaves. Ex: car

is composed of smaller objects
o Although each object is unique, it is usually similar to the other objects that we can

put them into same category or class. A 10 rupee note is unique from another 10 rupee
note only by few parameters such as date, location etc. The particular rupee can be
considered as instance of its class

 The general principles of object - orientation can be summarized as follows, based on the
object properties discussed above.
Object identity:

 Every object has its own identity
 Object identity is the property by which each object (regardless of class and its present state)

can be identified and treated as a distinct software entity
 An object retains its identity even if some or all the values of variables or definitions of

methods change over time
 Object identity is strong notion of identity that typically found in programming languages not

based on object orientation
 Several forms of identity are:

Value: A data value is used for identity (ex, primary key of a table in a relational db)
Name: A user supplied name is used for identifying. ex. var p1:person Here p1 is user
defined name for an object
Built in value: Object identity is typically implemented via a unique system generated
OID(object identity which is also known as handle). The value of OID is not visible to
external user, but is used internally by the system to identify each object uniquely and to
create and manage inter object references
Ex. var p1:person=person new
The right side of this statement creates a new object of class person and this object is given a
num, say some 420723 for identity. The handle (OID) is the identifier attached to an object
when it is created

Two rules used for handles:
1. Same handle remains with object for entire life
2. No two objects have same handle. When an object is created a new handle is assigned to it
or if a handle not being used currently by any object, then it can be assigned to new one.

var p1:person=person new
here p1 is used to hold the handle of the object created on right hand side

2

Object Oriented Analysis & Design UNIT - I
Here p1 is same as a pointer. P1 holds OID of an object. Even physical memory addresses of
objects can be used as it handles. But it will be difficult to handle when the object is mould
into memory or gets swapped out of disk
Encapsulation: Object reveal their "outside" through tangible behavior but keep their
"inside" hidden. Another way of saying this is that we do not need to know how an object
works to know how it behaves. Encapsulation is nothing but grouping of related ideas or
constructs into one unit, which can be referred to by a single name. In object orientation,
encapsulation usually means the grouping of operations and attributes into an object or class
structure, whereby the operation provide the sole facility for the access or modification of the
attribute values.
Information Hiding: An encapsulation technique whereby the encapsulated units externally
visible interface suppresses certain information available within the unit
Polymorphism: The facility by which a single operation name may be defined upon more
than one class and may denote different implementations(methods) in each of those classes
Genericity: It is the property of generic class which is an incomplete class specification with
the formal parameter list the generic class is also called as parametrized class also in order to
create an instantiable class matching set of actual parameters must be supplied to fill in the
missing details of the class discussion.

1.1 Importance of Modeling:
 In software engineering we use models for visualizing and specifying the software product or

applications so the designers use UML for this purposes
 We may also develop models from existing software to enable easier user understanding
 So in short, models can be used to specify, visualize, constructing and/or documenting a

system
 Ex: 1) if we want to build dog house we can start with pile of lumber, some nails and a few

endup with dog house. Unless house doesn't leak dog will be happy. If it doesn't work out we
can always start over.
2) If we want to build house if not enough start with lumber and nails. Here we need detailed
planning before we lay foundation so we prepare some blue prints
3) If we want to build high rise office building it is stupid to start with lumber, nails. Because
here we use people's money and they will demand to have input into size, shape and style of
building. So we need extensive planning because cost of failure is high

 There are many elements that contribute to a successful software organization. One common
thread is use of modelling

 Modelling is proven and well accepted engineering technique. Sometimes we build
mathematical models in order to analyze the effect wind (or) earthquakes on buildings

 Modelling differs from area to area. For ex in motion picture industry story boarding which is
form modelling is center to any products. In field of sociology, economics we build models
that we can validate our theories or try out new ones.

 All models have some set of common properties:
o Model is simplification of reality
o Model can be represented at different level of precision
o We can choose which details to represent in a model and which to ignore
o A single model is not sufficient and we have set of nearly independent models

Model:
A model is a simplification of reality. A model provides the blueprints of a system. A model
may be structural, emphasizing the organization of the system, or it may be behavioral,
emphasizing the dynamics of the system.

Why do we model

3

Object Oriented Analysis & Design UNIT - I
 We build models so that we can better understand the system we are developing.
 Through modeling, we achieve four aims.

1. Models help us to visualize a system as it is or as we want it to be.
2. Models permit us to specify the structure or behavior of a system.
3. Models give us a template that guides us in constructing a system.
4. Models document the decisions we have made.

 We build models of complex systems because we cannot comprehend such a system in its
entity.

 Software is complex and is composed of multiple interacting module and complexity can be
handled using higher language and meta languages like XML

 Models are used to reduce complexity. Some of modeling techniques are flowcharts, state
diagrams, E R diagrams. But they do not reflect object oriented. UML supports object
oriented thinking

 While developing software it is divided into modules
 This follows divide and conquer approach

1.2. Principles of Modeling
There are four basic principles of model

1. The choice of what models to create has a profound influence on how a problem is attacked
and how a solution is shaped.

Choose models well wrong models will mislead you causing focus on irrelevant
issues. If problem is in Quantum physics choose different model other than calculus so they
use fennymann diagram. If you are constructing a new building and concern about how it
behaves in high winds, construct a physical model and subject to tunnel tests.
If we build through eyes of
Database develop - focus on ER models and push to stored procedures
Structured analyst - End up with models that are algorithmic centric
Object oriented development - centred
Ex: there might be different approaches to built a system through a DBA's view system
analysts view, object oriented developers view
Any of these approaches might be right for an application and developed culture

2. Every model may be expressed at different levels of precision.
Sometimes model is just what you need other times we get down and dirty with bits.

So the best kinds of models are those which let us choose any degree detail depending on
who is viewing and why

3. The best models are connected to reality.
All the models should have clear connection to reality. All models simplify reality. It

is very important that simplification (or) simulation should not mark (or) hide important
details

4. No single model is sufficient. Every nontrivial system is best approached through a small set
of nearly independent models.
Ex: In building constructing, a number of blueprint like floor plans, elevation, electrical

 plans, plumbing plans etc., reveal all details.
1.3. Object Oriented Modeling

 In software, there are several ways to approach a model. The two most common ways are
1. Algorithmic perspective
2. Object-oriented perspective

1. Algorithmic Perspective: The traditional view of software development takes an
algorithmic perspective. In this approach, the main building block of all software is the
procedure or function. This view leads developers to focus on issues of control and the

4

Object Oriented Analysis & Design UNIT - I
decomposition of larger algorithms into smaller ones. As requirements change and the system
grows, systems built with an algorithmic focus turn out to be very hard to maintain.
2. Object-oriented perspective: In this the main building block of all software systems is
the object or class object is thing and a class is a description of a set of common objects.
Every object has an identity or name, state and behavior
Ex: Consider 3 tier architecture for billing system involving user interface, middleware and
database. In user interface we have concrete objects such as button, menu and dialog box. In
database we have concrete objects such as table represent entities. In middle layer we have
objects such as Transitions and business rules. Most contemporary languages, OS and tools
are object oriented in same fashion, to view world in terms of object.

 An Overview of UML
 The Unified Modeling Language is a standard language for writing software blueprints. The

UML may be used to visualize, specify, construct, and document the artifacts of a software-
intensive system.

 The UML is appropriate for modeling systems ranging from enterprise information systems
to distributed Web-based applications and even to hard real time embedded systems. It is a
very expressive language, addressing all the views needed to develop and then deploy such
systems.

The UML is a language for
 Visualizing
 Specifying
 Constructing
 Documenting

 Visualizing Through UML we see or visualize the existing system and ultimately we visualize
how the system is going to be after. Unless we think or visualize we can't implement. UML helps
to visualize how the components of system communicate and interacts with each other. Each and
everything about system can be visualized through UML. Visualizing through UML makes
model recreatable and easily interpretable even if one developer replaces another. The UML is
more than just a bunch of graphical symbols.

 Specifying means building models that are precise, unambiguous, and complete. UML addresses
the specification of all the important analysis, design, implementation decisions that must be
made in developing and deploying a software system

 Constructing the UML is not a visual programming language, but its models can be directly
connected to a variety of programming languages through mapping a model from UML to a
programming language like JAVA or C++ or VB. Forward and Reverse Engineering are possible
through mapping that is, coding from a UML model into a programming language and
reconstructing a model from an implementation into UML respectively. Apart from this UML
permits direct execution of models, system simulation and the instrumentation of running
systems.

 Documenting the deliverables of a project apart from coding are some artifacts which are critical
in controlling, measuring, and communicating about system during its development via.,
requirements, architecture, design, source code, project plans, tests, prototypes, releases etc.,

Applications of UML:
 Mainly used for software intensive systems

Enterprise information system, Banking & Financial Services, Telecommunications,
Transportation, Defence, aerospace, Retail, Medical Electronics, Scientific, Distributed web
based service.

1.4. Conceptual Model of UML:
 UML is a standard language for writing software blue prints
 There are three major elements in the conceptual model of the UML:

1. UML's basic building blocks

5

Object Oriented Analysis & Design UNIT - I
2. Rules that dictate how these building blocks may interact with each other
3. Some common mechanisms that apply throughout the UML

1. Building blocks of UML:
o The building blocks of UML are further divided into three parts.

a. Things
b. Relationships: tie things together
c. Diagrams: group interesting collection of things

a. Things in the UML
 Things are first class citizens in model
 There are four kinds of things in the UML:

0 Structural things
1 Behavioral things
2 Grouping things
3 Annotational things

Structural things are the nouns of UML models. These are the mostly static parts of a model,
representing elements that are either conceptual or physical. In all, there are seven kinds of structural
things.

1. Classes
2. Interfaces
3. Collaborations
4. Use cases
5. Active classes
6. Components
7. Nodes

Class is a description of a set of objects that share the same attributes, operations, relationships, and
semantics. A class implements one or more interfaces. Graphically, a class is rendered as a rectangle,
usually including its name, attributes, and operations.

Interface is a collection of operations that specify a service of a class or component. An interface
therefore describes the externally visible behavior of that element. An interface might represent the
complete behavior of a class or component or only a part of that behavior. An interface defines a set
of operation specification(signatures) and not a set of operation implementations. An interface is
rendered as a circle together with its name. An interface rarely stands alone. Rather, it is typically
attached to the class or component that realizes the interface

Ispelling
Collaboration defines an interaction and is a society of roles and other elements that work together
to provide some cooperative behavior that's bigger than the sum of all the elements. Therefore,
collaborations have structural, as well as behavioral, dimensions. A given class might participate in
several collaborations. Graphically, a collaboration is rendered as an ellipse with dashed lines,
usually including only its name

6

Object Oriented Analysis & Design UNIT - I

Usecase
 Use case is a description of set of sequence of actions that a system performs that yields an

observable result of value to a particular actor
 Use case is used to structure the behavioral things in a model.
 A use case is realized by a collaboration. Graphically, a use case is rendered as an ellipse

with solid lines, usually including only its name

Active class is just like a class except that its objects represent elements whose behavior is
concurrent with other elements. Graphically, an active class is rendered just like a class, but with
heavy lines, usually including its name, attributes, and operations

Component is a physical and replaceable part of a system that conforms to and provides the
realization of a set of interfaces. Graphically, a component is rendered as a rectangle with tabs

Node is a physical element that exists at run time and represents a computational resource, generally
having at least some memory and, often, processing capability. A set of component may be in one
node can move from one node to other. A set of components may reside on a node. Graphically, a
node is rendered as a cube, usually including only its name

Behavioral Things are the dynamic parts of UML models. These are the verbs of a model,
representing behavior over time and space. In all, there are two primary kinds of behavioral things
0 i. Interaction
1 ii. state machine
i. Interaction
0 Interaction is a behavior that comprises a set of messages exchanged among a set of objects
within a particular context to accomplish a specific purpose. Behavior of objects are specified within
the interaction. An interaction involves a number of other elements, including messages, action
sequences and links. Graphically a message is rendered as a directed line, almost always including
the name of its operation

ii. State Machine

7

Object Oriented Analysis & Design UNIT - I
0 State machine is a behavior that specifies the sequences of states an object or an interaction
goes through during its lifetime in response to events, together with its responses to those events.
Behavior of Single class or group of classes may be specified with state machine. State machine
involves a number of other elements, including states, transitions, events and activities. Graphically,
a state is rendered as a rounded rectangle, usually including its name and its substates

Grouping Things:-
These are the organizational parts of UML models. These are the boxes into which a model can be
decomposed. There is one primary kind of grouping thing, namely, packages.

Package:-
A package is a general-purpose mechanism for organizing elements into groups. Structural things,
behavioral things, and even other grouping things may be placed in a package. Package is purely
conceptual. Graphically, a package is rendered as a tabbed folder, usually including only its name
and, sometimes, its contents

Annotational things are the explanatory parts of UML models. These are the comments you may
apply to describe about any element in a model. Annotational thing is note.

0 A note is simply a symbol for rendering constraints and comments attached to an element or
a collection of elements.
1 Graphically, a note is rendered as a rectangle with a dog-eared corner, together with a textual
or graphical comment

Relationships in the UML: There are four kinds of relationships in the UML:
1. Dependency
2. Association
3. Generalization
4. Realization

Dependency:-
0 Dependency is a semantic relationship between two things in which a change to one thing
may affect the semantics of the other thing
1 Graphically a dependency is rendered as a dashed line, possibly directed, and occasionally
including a label

Association is a structural relationship that describes a set of links, a link being a connection among
objects.
Graphically an association is rendered as a solid line, possibly directed, occasionally including a
label, and often containing other adornments, such as multiplicity and role names. By using
association you can navigate from an object of one class to an object of another class

8

Object Oriented Analysis & Design UNIT - I

Aggregation is a special kind of association, representing a structural relationship between a whole
and its parts.
Generalization: A generalization is a specialization/generalization relationship in which objects of
the specialized element (the child) are substitutable for objects of the generalized element (the
parent). In this way, the child shares the structure and the behavior of the parent. Graphically, a
generalization relationship is rendered as a solid line with a hollow arrowhead pointing to the parent

R ealization is a semantic relationship between classifiers, wherein one classifier specifies a contract
that another classifier guarantees to carry out. Realization relationship is in 2 places a. between
interface and classes (or) components b. Between usecases and collaboration. Graphically a
realization relationship is rendered as a cross between a generalization and a dependency
relationship

Diagrams in the UML
 When we model something, we create simplification of reality.
 So that we can better understand the system being developed.
 Using the UML, we build our models from basic building blocks, such as interfaces,

collaborations, components, nodes dependencies, generalization and association.
 Diagram is the graphical presentation of a set of elements, most often rendered as a connected

graph of vertices (things) and arcs (relationships).
 Diagrams are used to visualize the system from different perspectives
 The UML defines a number of diagrams so that different aspects of system can be focused

individually.
 In theory, a diagram may contain any combination of things and relationships.
 The static or structural part of system are viewed using one of the four following diagrams.

 Class diagram
 Object diagram
 Component diagram
 Deployment diagram

 The dynamic or behavioral parts of a system are
viewed using one of the following

 Use case diagram
 Sequence diagram
 Collaboration diagram
 Statechart diagram
 Activity diagram

Class diagram
0 A class diagram shows a set of classes, interfaces, and collaborations and their relationships.
Class diagrams are the most common diagram found in modeling object oriented systems. Class
diagrams are used to illustrate the static design view of a system. Class diagrams that include active
classes address the static process view of a system.

Object diagram

9

Object Oriented Analysis & Design UNIT - I
Object diagrams represent static snapshots of instances of the things found in class diagrams.

These diagrams address the static design view or static process view of a system. An object diagram
shows a set of objects and their relationships

Use case diagram
A use case diagram shows a set of use cases and actors and their relationships. Use case

diagrams address the static use case view of a system. These diagrams are especially important in
organizing and modeling the behaviors of a system.

Interaction Diagrams
Both sequence diagrams and collaboration diagrams are kinds of interaction diagrams. Interaction
diagrams address the dynamic view of a system.
0
1 A sequence diagram is an interaction diagram that emphasizes the time-ordering of
messages
2
3 A collaboration diagram is an interaction diagram that emphasizes the structural
organization of the objects that send and receive messages
4 Sequence diagrams and collaboration diagrams are isomorphic, meaning that you can take
one and transform it into the other
Statechart diagram
A statechart diagram shows a state machine, consisting of states, transitions, events, and activities.
Statechart diagrams address the dynamic view of a system. Important in modeling behavior of
interface, class or collaboration. Emphasize the even - ordered behavior of an object, which is
especially useful in modeling reactive systems.

Activity diagram
0 An activity diagram is a special kind of a statechart diagram that shows the flow from
activity to activity within a system. Activity diagrams address the dynamic view of a system. They
are especially important in modeling the function of a system and emphasize the flow of control
among objects. Activity shows a set of activities, the sequential or branching flow from activity to
activity, and objects that act and are acted upon.
1
Component diagram

A component diagram shows components and their relationships shows dependencies among
set of components. Component diagrams address the static implementation view of a system. They
are related to class diagrams in that a component typically maps to one or more classes, interfaces, or
collaborations.

Deployment diagram
A deployment diagram shows the configuration of run-time processing nodes and the

components that live on them. These are used to illustrate the static deployment view of architecture.
These are related to component diagram in that a node typically encloses one or more components.
Deployment diagrams address the static deployment view of architecture.

Rules of the UML:
Building blocks are not enough. UML has number of rules that specify what a well formed

model should look like. A well formed model is one i.e., semantically self consistent and an harmony
with all its related models.
The UML has semantic rules for

1. Names What you can call things, relationships, and diagrams
2. Scope The context that gives specific meaning to a name

10

Object Oriented Analysis & Design UNIT - I
3. Visibility How those names can be seen and used by others
4. Integrity How things properly and consistently relate to one another
5. Execution What it means to run or simulate a dynamic model

A Model built during the development of a software-intensive system tend to evolve and may be
viewed by many stakeholders in different ways and at different times. For this reason, it is common
for the development team to not only build models that are well-formed, but also to build models
that are

1. Elided Certain elements are hidden to simplify the view
2. Incomplete Certain elements may be missing
3. Inconsistent The integrity of the model is not guaranteed

Rules of UML encourage us but do not force us to address most important analysis, design and
implementation over time.

Common Mechanisms
UML is made simpler by the presence of four common mechanisms that apply consistently
throughout the language.

1. Specifications
2. Adornments
3. Common divisions
4. Extensibility mechanisms

Specification: UML is a graphical language, for every graphical notion there is specification that
provides textual statement of syntax and semantic of building blocks. Behind class icon is
specification that provides full set of attributes, operations and behavior of that class. It is possible to
build a model increment by drawing diagrams then adding semantics to the model specifications.
UML's specifications provide a semantic backplane that contains all the parts of all the models of a
system, each part related to one another in a consistent fashion. UML's diagram are simply visual
properties into backplane.

Adornments Most elements in the UML have a unique and direct graphical notation that provides a
visual representation of the most important aspects of the element. A class's specification may
include other details, such as whether it is abstract or the visibility of its attributes and operations.
Many of these details can be rendered as graphical or textual adornments to the class's basic
rectangular notation.

Common Divisions In modelling object oriented systems would gets divide in atleast. First division
of class & object
Class - abstraction
Object - concrete manifestation of abstraction
We can model class as well as objects

11

Object Oriented Analysis & Design UNIT - I

We have same symbol for object and class but we orderly object name. There is separation of
interface & implementation.

Extensibility Mechanisms
UML provide standard language for writing software blueprints. UML is open ended making it
possible to extend in all ways. The UML's extensibility mechanisms include

1. Stereotypes
2. Tagged values
3. Constraints

S tereotype(new building blocks)
Stereotype extends the vocabulary of the UML, allowing you to create new kinds of building

blocks that are derived from existing ones but that are specific to your problem. Stereotype is
represented as a name enclosed by gulliments (<<name>>) and place over another element. It can be
defined as icon, as a visual cue to the right of its name, or the icon can be used as the basic symbol
of the stereotyped item, as shown in fig.

12

Object Oriented Analysis & Design UNIT - I

Tagged Values:(new property)
With stereotype new things can be added but with tagged values new properties can be added. For
ex, when a project is released it is important to keep track version no. Here tagged values can be
used to add this information to the models. The tag value applies to the element itself and not its
instances. The fig. illustrates the concepts of tagged values. Tagged values are used to specify
properties related to the coding. A tagged value is represented as a string enclosed by brackets and
placed below the name of other element. The string is syntax is:

Name(tag), a separator(=), value

Constraints(new rules):
This is an extension of the semantics of a UML element, which allows the addition of new rules or
modification of existing areas. In order for a system model to be well formed the conditions
specified by the constraints should hold true.

When more precise specification of semantics is needed, the UML's Object Constraint Language
(OCL) is used. As constraint is represented as a string enclosed by brackets and placed near the
association, as shown in fig. below

13

Object Oriented Analysis & Design UNIT - I
1.5. Architecture
0 For visualizing, specifying, constructing and documenting a software interactive system is
viewed in number of perspectives. Different people (analyst, developer, system integration) bring
different agendas to project. A system's architecture is perhaps the most important artifact that can be
used to manage these different viewpoints and so control the iterative and incremental development
of a system throughout its life cycle. Architecture is the set of significant decisions about
0 - The organization of a software system
1 - The selection of the structural elements and their interfaces by which the system is
2 composed
3 - Their behavior, as specified in the collaborations among those elements
4 - The composition of these structural and behavioral elements into progressively larger
5 subsystems
6 - The architectural style that guides this organization: the static and dynamic elements and
7 their interfaces, their collaborations, and their composition.

Software architecture is not only concerned with structure and behavior, but also with usage,
functionality, performance, resilience, reuse, comprehensibility, economic and technology
constraints and trade-offs, and aesthetic concerns.
Modeling a System's Architecture

Vocabulary System Assembly
Functionality Configuration Mgmt

Behavior

Performance System topology
Scalability distribution delivery
Throughput installation

Above fig. illustrates, the architecture of a software intensive system can be best be described by five
interlocking views.

Use case view
The use case view of a system encompasses the use cases that describe the behavior of the

system as seen by its end users, analysts, and testers. It specifies the forces that shape the systems
architecture. Doesn't really specify organization of software. Static views are captured in usecase
diagram. The dynamic aspects of this view are captured in interaction diagrams, state chart
diagrams, and activity diagrams.
Design View

The design view of a system encompasses the classes, interfaces, and collaborations that
form the vocabulary of the problem and its solution. This view primarily supports the functional
requirements of the system, meaning the services that the system should provide to its end users.
Static view are captured in class & object diagram and dynamic view are captured by interaction,
statechart, activity diagram.
Process View

The process view of a system encompasses the threads and processes that form the
system's concurrency and synchronization mechanisms. This view primarily addresses the

14

 Design View

 Process View

 Implementation
 View

 Deployment
view

Use
case
 view

Object Oriented Analysis & Design UNIT - I
performance, scalability, and throughput of the system. Static and dynamic views are captured in
same diagram.
Implementation View
0 The implementation view of a system encompasses the components and files that are used
to assemble and release the physical system. This view primarily addresses the configuration
management of the system's releases, made up of somewhat independent components and files that
can be assembled in various ways to produce a running system. Static views are captured in
component diagram and dynamic view are captured in state chart, interaction, activity diagram.
Deployment view

The deployment view of a system encompasses the nodes that form the system's hardware
topology on which the system executes. This view primarily addresses the distribution, delivery, and
installation of the parts that make up the physical system. Static views are captured in deployment
diagram and dynamic view are captured in interaction, statechart and activity diagram.
5 views interact with one another
Usecase - shape systems architecture
Design - support for requirements
Process - focus on performance, scalability, throughput
Implementation - focus on configuration management
Deployment - focuses on installation, distribution and delivery of parts.

1. 6. Software Development Life Cycle(SDLC):

UML is not tied to any particular SDLC but we should consider a process i.e., it is process
independent. The three main aspects of this process are:

 Usecase driven
 Architecture centric
 Iterative & Incremental - risk driven

Usecase driven:
Here usecases are used as primary artifact which is used for verifying and validating system
architecture, testing and for communicating among stakeholders

15

Object Oriented Analysis & Design UNIT - I
Architecture centric:
System architecture is used as primary artifact, for constructing, managing and evolve system under
development.
Iterative and Incremental:
Managing stream of executable releases. Involves continuous integration of system to provide
releases. Risk driven because each new release is focused on attacking and reducing most significant
risk to the success of project. All these driven can be broken into phases. A phase is span of time
between two major milestones of process. There are four phases in SDLC

 Inception
 Elaboration
 Construction
 Transition

Inception:
First phase of process. Basic idea is brought up for development.
Elaboration:
Second phase of process - when product division and architecture are defined. Here system
requirement are articulated, prioritized and baselined. Requirement may range from general vision
statement to precise evaluation criteria.
Construction:
Third phase of process. When software is brought from an executable architecture baseline to bring
ready to the user community. Requirements and its evaluation criteria are constantly reexamined
against business needs of the project and resources are allocated appropriately to attack risks to the
project.
Transition:
Fourth phase of process. When software goes into the hands of user community. The software
development process does not end here, the system is continuously improved, bugs are removed and
few features are added.

The SDLC involves a continuous stream of executable releases of the system's architecture.

16

	UNIT – I
	Introduction
	1.1 Importance of Modeling:
	Model:
	Why do we model
	We build models so that we can better understand the system we are developing.
	We build models of complex systems because we cannot comprehend such a system in its entity.
	Software is complex and is composed of multiple interacting module and complexity can be handled using higher language and meta languages like XML
	Models are used to reduce complexity. Some of modeling techniques are flowcharts, state diagrams, E R diagrams. But they do not reflect object oriented. UML supports object oriented thinking
	While developing software it is divided into modules
	This follows divide and conquer approach
	1.2. Principles of Modeling
	There are four basic principles of model
	1.3. Object Oriented Modeling
	In software, there are several ways to approach a model. The two most common ways are
	1. Algorithmic Perspective: The traditional view of software development takes an algorithmic perspective. In this approach, the main building block of all software is the procedure or function. This view leads developers to focus on issues of control and the decomposition of larger algorithms into smaller ones. As requirements change and the system grows, systems built with an algorithmic focus turn out to be very hard to maintain.
	2. Object-oriented perspective: In this the main building block of all software systems is the object or class object is thing and a class is a description of a set of common objects. Every object has an identity or name, state and behavior
	An Overview of UML
	The UML is a language for
	a. Things in the UML
	Things are first class citizens in model
	There are four kinds of things in the UML:
	Interface is a collection of operations that specify a service of a class or component. An interface therefore describes the externally visible behavior of that element. An interface might represent the complete behavior of a class or component or only a part of that behavior. An interface defines a set of operation specification(signatures) and not a set of operation implementations. An interface is rendered as a circle together with its name. An interface rarely stands alone. Rather, it is typically attached to the class or component that realizes the interface
	Usecase
	i. Interaction
	ii. State Machine
	Grouping Things:-
	Package:-
	A package is a general-purpose mechanism for organizing elements into groups. Structural things, behavioral things, and even other grouping things may be placed in a package. Package is purely conceptual. Graphically, a package is rendered as a tabbed folder, usually including only its name and, sometimes, its contents
	Dependency:-
	Diagrams in the UML
	Class diagram
	Object diagram
	Use case diagram
	Interaction Diagrams
	Statechart diagram
	A statechart diagram shows a state machine, consisting of states, transitions, events, and activities. Statechart diagrams address the dynamic view of a system. Important in modeling behavior of interface, class or collaboration. Emphasize the even - ordered behavior of an object, which is especially useful in modeling reactive systems.
	Activity diagram
	Component diagram
	Deployment diagram
	Rules of the UML:
	Building blocks are not enough. UML has number of rules that specify what a well formed model should look like. A well formed model is one i.e., semantically self consistent and an harmony with all its related models.
	The UML has semantic rules for
	Common Mechanisms
	
	We have same symbol for object and class but we orderly object name. There is separation of interface & implementation.
	
	Extensibility Mechanisms
	UML provide standard language for writing software blueprints. UML is open ended making it possible to extend in all ways. The UML's extensibility mechanisms include
	Stereotype(new building blocks)
	This is an extension of the semantics of a UML element, which allows the addition of new rules or modification of existing areas. In order for a system model to be well formed the conditions specified by the constraints should hold true.
	
	When more precise specification of semantics is needed, the UML's Object Constraint Language (OCL) is used. As constraint is represented as a string enclosed by brackets and placed near the association, as shown in fig. below
	
	1.5. Architecture
	Modeling a System's Architecture
	Behavior
	Use case view
	Design View
	The design view of a system encompasses the classes, interfaces, and collaborations that form the vocabulary of the problem and its solution. This view primarily supports the functional requirements of the system, meaning the services that the system should provide to its end users. Static view are captured in class & object diagram and dynamic view are captured by interaction, statechart, activity diagram.
	Process View
	The process view of a system encompasses the threads and processes that form the system's concurrency and synchronization mechanisms. This view primarily addresses the performance, scalability, and throughput of the system. Static and dynamic views are captured in same diagram.
	Implementation View
	Deployment view

